Code: EC3T1

II B.Tech - I Semester-Regular/Supplementary Examinations November 2017

ENGINEERING MATHEMATICS - III
 (ELECTRONICS \& COMMUNICATION ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks $11 \mathrm{x} 2=22 \mathrm{M}$
1.
a) Prove that $\mu^{2}=1+\frac{\delta^{2}}{4}$
b) Prove that
$\Delta[x(x+1)(x+2)(x+3)]=4(x+1)(x+2)(x+3)$ if $\mathrm{h}=1$
c) Write the formulae for IV order Runge-Kutta method to solve first order differential equation.
d) Compute $y(0.25)$ by Euler's method, given $y^{\prime}=2 x y$, $y(0)=1$
e) Find k if the function $f(z)=e^{x}(\operatorname{cosky}+i \operatorname{sinky})$ is analytic.
f) Show that the function $u(x, y)=x^{2}-y^{2}-y$ is harmonic.
g) Write Cauchy-Riemann equations in polar form.
h) Prove that $\oint \frac{d z}{z-a}=2 \pi i$ over the circle $|z-a|=r$
i) Define Bilinear transformation.
j) Find the residue of $f(z)=\frac{z}{z^{2}+1}$ at each pole.
k) Find the invariant points for the transformation $w=\frac{z-1}{z+1}$

PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) Find the real root of the equation $\cos x=x e^{x}$ using Regula-Falsi method.
b) Find the no. of men getting wages below Rs. 15 from the following data. 8 M

Wages in Rs.	$0-10$	$10-20$	$20-30$	$30-40$
No. of men	9	30	35	42

3. a) Evaluate $y(0.2)$ using fourth order Runge-Kutta method, given that $y^{\prime}=x+y^{2}, y(0)=1$
b) Solve $y^{\prime}=x y+1, y(0)=1$ using Taylor's series method and compute $y(0.1)$
4. a) If $f(z)$ is a regular function of z, prove that

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}
$$

b) Find an analytic function whose real part is

$$
e^{-x}(x \sin y-y \cos y)
$$

5. a) Evaluate $\int_{0}^{1+i}\left(x^{2}-i y\right) d z$ along the paths
(i) $y=x$
(ii) $y=x^{2}$
8 M
b) Find Taylor's expansion for the function $f(z)=\frac{1}{(1+z)^{2}}$ about the point $z=-i$
6. a) Using the method of contour integration, prove that

$$
\int_{0}^{2 \pi} \frac{d \theta}{2+\cos \theta}=\frac{2 \pi}{\sqrt{3}}
$$

b) Find the bilinear transformation which maps the points $z=1, i,-1$ into the points $w=i, 0,-i$. Hence find the image of $|z|<1$

